ポルト継手計算書

H428-407-20-35

土木仕様

(SI 単位)

ヒロセ株式会社
ボルト継手（H428・407）の設計

1. 設計条件
母材にボルト孔がある場合、引張力に対し、ボルト孔分が抵抗できないため、ボルト孔を控除した母材の抵抗力を設計強度とする。
添接板の設計は、設計強度に対し、添接板の断面性能に応じて、フランジとウェブに応力を分配する。

(1) 許容応力度
(母材と添接板の材質は同一とする。)

「道路土工 仮設構造物工指針（日本道路協会）」に準拠する。

仮設鋼材の許容応力度の割増

H形鋼の許容曲げ・引張応力度
H形鋼の許容せん断応力度
添接板の許容曲げ・引張応力度
添接板の許容せん断応力度
ボルトの許容せん断応力度

(2) 設計母材
H形鋼：H428・407・20・35

(3) 添接板
フランジ：2・3L・4・7L・ウェブ：2・3L

(4) ボルト
ボルト直径（M）
ボルト孔径（d+0.20）

平 面 図

断 面 図
２．継手部の設計

母材の断面性能計算

母材：H428 x 407 x 20 x 35

<table>
<thead>
<tr>
<th>部品</th>
<th>長さ</th>
<th>準寸法</th>
<th>厚さ</th>
</tr>
</thead>
<tbody>
<tr>
<td>H 形鋼の高さ</td>
<td>H = 428 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H 形鋼の幅</td>
<td>B = 407 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ウェブ厚</td>
<td>t = 20 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>フランジ厚</td>
<td>t = 35 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>フィレット半径</td>
<td>r = 準寸法</td>
<td></td>
<td></td>
</tr>
<tr>
<td>断面積</td>
<td>A = (\frac{H \cdot t}{2})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>断面二次モーメント</td>
<td>I = (\frac{I \cdot t}{2})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

（断面積）

ウェブ（ウェブ）断面積：

\(A = \frac{d \cdot t \cdot n}{2} \)

（ウェブ／ウェブ）断面積：

\(A = \frac{A - \frac{d \cdot t \cdot n}{2}}{2} \)

（ウェブ／ウェブ）断面積：

\(A = A + \frac{d \cdot t \cdot n}{2} \)

（断面性能）

ポルト孔径 \(d = \) 準寸法

フランジボルトの本数 \(n = \) 準寸法

ウェブボルトの本数 \(m = \) 準寸法

（断面二次モーメント：ウェブ孔は熱処理の場合）

\(I = \frac{d \cdot t \cdot \frac{H}{2}}{2} \)

（片フランジ断面）

\(I = \frac{I \cdot d \cdot t}{2} \)

（両フランジ断面）

\(I = I \cdot \frac{I}{2} \)
添接板の断面積の計算

1 フランジ添接板

外側板幅 \(b \) = \(\text{mm} \)

板厚 \(t \) = \(\text{mm} \)

内側板幅 \(b \) = \(\text{mm} \)

板厚 \(t \) = \(\text{mm} \)

ボルト孔径 \(d \) = \(\text{mm} \)

ボルト本数 \(n \) = 本

\(\begin{align*}
(\text{外側添接板}) \\
\sqrt{A} &= d \cdot t \cdot n \\
\sqrt{A} &= b \cdot t \cdot - \sqrt{A}
\end{align*} \)

\(\begin{align*}
(\text{内側添接板}) \\
\sqrt{A} &= d \cdot t \cdot n \\
\sqrt{A} &= b \cdot t \cdot - \sqrt{A}
\end{align*} \)

(フランジ合計)

\(\sqrt{A} = \sqrt{A} + \sqrt{A} \)

\(\sqrt{A} = \sqrt{A} + \sqrt{A} \)

2 ウェブ添接板

板幅 \(b \) = \(\text{mm} \)

板厚 \(t \) = \(\text{mm} \)

ボルト本数 \(m \) = 本

\(\begin{align*}
\sqrt{A} &= d \cdot t \cdot m \\
\sqrt{A} &= b \cdot t \end{align*} \)

(ウェブ合計)

\(\sqrt{A} = \sqrt{A} \)

3 断面積

\(\sqrt{A} = \sqrt{A} + \sqrt{A} \)

\(\sqrt{A} = \sqrt{A} + \sqrt{A} \)
添接板の断面二次モーントメントの計算

フランジ添接板

<table>
<thead>
<tr>
<th>板幅</th>
<th>b</th>
<th>(m_b)</th>
<th>本数</th>
<th>(m_b)</th>
<th>板厚</th>
<th>t</th>
<th>(m_t)</th>
<th>本数</th>
<th>(m_t)</th>
<th>面積</th>
<th>A</th>
<th>(m_A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ポルト孔径</td>
<td>d</td>
<td></td>
<td>(m_d)</td>
<td></td>
<td>本数</td>
<td>(m_m)</td>
<td></td>
<td>本数</td>
<td>(m_m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>フランジ</td>
<td>n</td>
<td></td>
<td>(m_n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(H - d)</td>
<td></td>
<td>(H - t)</td>
</tr>
<tr>
<td>ウエブ</td>
<td>m</td>
<td></td>
<td>(m_m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(H - m)</td>
<td></td>
<td>(H - m)</td>
</tr>
</tbody>
</table>

(外側添接板)

\[
\begin{align*}
m & = b - d \cdot n \\
m_I & = \frac{m \cdot b - m \cdot t}{m \cdot \Delta} \\
I & = A \cdot \left(H - m \cdot m \cdot t \right)^2 + I_{L}
\end{align*}
\]

(内側添接板)

\[
\begin{align*}
m & = b - d \cdot n \\
m_I & = \frac{m \cdot b - m \cdot t}{m \cdot \Delta} \\
I & = A \cdot \left(H - m \cdot m \cdot t \right)^2 + I_{L}
\end{align*}
\]

(フランジ合計)

\[
I = I_{L} \cdot \left(I_{L} + I_{L} \right)
\]

ウエブ添接板

<table>
<thead>
<tr>
<th>板幅</th>
<th>b</th>
<th>(m_b)</th>
<th>本数</th>
<th>(m_b)</th>
<th>板厚</th>
<th>t</th>
<th>(m_t)</th>
<th>本数</th>
<th>(m_t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ポルト間隔</td>
<td>p</td>
<td></td>
<td>(m_p)</td>
<td></td>
<td>本数</td>
<td>(m_m)</td>
<td></td>
<td>本数</td>
<td>(m_m)</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
m & = t \cdot b \\
m_I & = \frac{m \cdot b}{m \cdot \Delta} \\
y & = y^0 + y^0 + y^0 + \cdots \\
I & = d \cdot m \cdot t \cdot y + m \cdot t \cdot \left(d \right)^2
\end{align*}
\]

(ウェブ合計)

\[
I = I_{L} \cdot \left(I_{L} + I_{L} \right)
\]

断面二次モーントメント

\[
I = \begin{pmatrix} I_{L} + I_{L} \end{pmatrix}
\]
(1) 曲げモーメントの計算

・ H形鋼1本当たりの抵抗曲げモーメント

許容曲げ応力度 σ0 = 210N/mm2
断面係数 Z0 = 4928cm²

\[M = \sigma_0 \cdot Z \]

\[= 210 \cdot 4928 = 103488000 \text{N}\cdot\text{mm} \]

【概念図】

(2) フランジ添接板およびボルトの検討

\[dM = M \cdot \frac{dI}{I} \]

\[= \frac{210 \cdot 4928}{9.5} = 103488000 \text{N}\cdot\text{mm} \]

(外側フランジ)

\[dM = dM \cdot \frac{dI}{I} \]

\[= \frac{210 \cdot 4928}{9.5} = 103488000 \text{N}\cdot\text{mm} \]

\[dY = dY \cdot H + \frac{M}{dI} \]

\[= \frac{210 \cdot 4928}{9.5} = 103488000 \text{N}\cdot\text{mm} \]
（内側フランジ）

\[jM = jM \cdot \frac{jI}{jI} \]

= \frac{jM}{jI} \cdot jI

= \frac{jM}{jI} \cdot jI

\[\gamma Y = \gamma Y \cdot \frac{H - t}{t} \]

= \gamma Y \cdot \frac{H - t}{t}

= \gamma Y \cdot \frac{H - t}{t}

\[\% \]
3.ウェブヤシグ板およびボルトの検討

\[J = \frac{M}{I} \cdot \frac{I}{I} \]

\[= \frac{\text{断面抵抗}}{\text{断面抵抗}} \]

\[a \cdot y = \text{断面抵抗} \cdot \text{断面抵抗} = \text{断面抵抗} \]

\[\theta \cdot M \cdot \text{断面抵抗} \cdot \text{断面抵抗} \]

ボルト1本の耐力

\[M = \frac{1}{2} \cdot \frac{d}{2} \]

\[S = \frac{d}{2} \cdot t \cdot \frac{d}{2} \]

最小\(S \)

【概念図】

\[I = \frac{1}{2} \cdot m \cdot m \cdot \{ p \cdot (m \cdot 1) + p \cdot (m \cdot 1) \} \]

\[= \frac{1}{2} \cdot m \cdot m \cdot \{ p \cdot (m \cdot 1) \} \]

(ボルト群の回転中心Gから最外端ボルトまでの距離)

\[R \]

\[x = \frac{1}{2} \cdot m \cdot m \]

\[y = \frac{1}{2} \cdot m \cdot m \]

\[R = \frac{Mw}{I} \cdot y \]

\[R = \frac{Mw}{I} \cdot x \]

\[R = \frac{Mw}{I} \cdot r \]
(1) せん断力の計算

H形鋼1本当たりの抵抗せん断力

許容せん断応力度 \(f_s = \frac{120 \text{N/mm}^2}{679200 \text{N}} = 0.0000017 \text{mm}^2 \)

ウェブせん断有効面積 \(A_s = \frac{679200 \text{N}}{75467 \text{N}} = 90 \text{mm}^2 \)

\[S = \frac{f_s}{A_s} \]

\[= \frac{120 \text{N/mm}^2}{679200 \text{N}} \]

ウェブ添接板の応力度

添接板断面積 \(A_s = \frac{6560 \text{mm}^2}{5660 \text{mm}^2} = 1.15 \text{mm}^2 \)

\[\sigma = \frac{S}{A_s} \]

\[= \frac{120 \text{N/mm}^2}{679200 \text{N}} \]

ポルトの応力

ポルトの許容せん断応力度 \(f_s = \frac{285 \text{N/mm}^2}{380.1 \text{mm}} = 0.0000747 \text{mm}^2 \)

H形鋼の許容支圧応力度 \(f_s = \frac{355 \text{N/mm}^2}{380.1 \text{mm}} = 0.0000933 \text{mm}^2 \)

ウェブ厚 \(t = \frac{2.0 \text{cm}}{3.801 \text{cm}} = 0.526 \text{mm} \)

ポルト1本の耐力 \(\sigma \)

M \(\sigma = \frac{\sigma \cdot d^2}{2} = \frac{216657 \text{N} \cdot \text{mm}^2}{2} \)

\[S = \frac{d \cdot t \cdot \sigma}{2} \]

\[= \frac{2.0 \text{cm} \cdot 3.801 \text{cm} \cdot 0.526 \text{mm}}{2} \]

最小 \(S \)

\[R = \frac{S}{m \cdot m} \]

\[= \frac{216657 \text{N} \cdot \text{mm}^2}{2} \]

(2) ウェブポルトの合成応力

（最外端ポルトの応力）

X方向成分（曲げ） \(R = \frac{216657 \text{N} \cdot \text{mm}^2}{2} \)

Y方向成分（曲げ） \(R = \frac{216657 \text{N} \cdot \text{mm}^2}{2} \)

Y方向成分（せん断） \(R = \frac{216657 \text{N} \cdot \text{mm}^2}{2} \)

\[R = \sqrt{R_x^2 + \left(R_y + R_s \right)^2} \]

\[= \sqrt{216657 \text{N} \cdot \text{mm}^2 + \left(\frac{216657 \text{N} \cdot \text{mm}^2}{2} \right)^2} \]

\[= \frac{216657 \text{N} \cdot \text{mm}^2}{2} \]
3．計算結果

<table>
<thead>
<tr>
<th>材料</th>
<th>H428 407 20 35</th>
</tr>
</thead>
<tbody>
<tr>
<td>フランジ部</td>
<td>据付板仕様 2枚：</td>
</tr>
<tr>
<td>ポルト仕様</td>
<td>M60本</td>
</tr>
<tr>
<td>（トリガ型高力ボルトの場合）</td>
<td></td>
</tr>
</tbody>
</table>

ウェブ部

据付板仕様 2枚： |

ポルト仕様 | M60本 | M80本 |
| （トリガ型高力ボルトの場合） |

【平面図】

【側面図】

【断面図】